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A neural field is a continuous version of a neural network model account-
ing for dynamical pattern forming from populational firing activities in
neural tissues. These patterns include standing bumps, moving bumps,
traveling waves, target waves, breathers, and spiral waves, many of them
observed in various brain areas. They can be categorized into two types:
a wave-like activity spreading over the field and a particle-like localized
activity. We show through numerical experiments that localized traveling
excitation patterns (traveling bumps), which behave like particles, exist
in a two-dimensional neural field with excitation and inhibition mech-
anisms. The traveling bumps do not require any geometric restriction
(boundary) to prevent them from propagating away, a fact that might
shed light on how neurons in the brain are functionally organized. Colli-
sions of traveling bumps exhibit rich phenomena; they might reveal the
manner of information processing in the cortex and be useful in various
applications. The trajectories of traveling bumps can be controlled by
external inputs.

1 Introduction

A neural field model is a continuous version of a neural network model
describing the spatiotemporal patterns of populational neuronal firing ac-
tivities. Classical studies include Wiener and Rosenblueth (1946) and Far-
ley and Clark (1961). Its modern version was first proposed by Wilson
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and Cowan (1973), and mathematical studies were done by Amari (1977)
and Kishimoto and Amari (1979). Since then, a large number of studies
have been conducted on the dynamics of excitation in neural fields (see
Ermentrout, 1998; Doubrovinski & Herrmann, 2009; Coombes, 2005, for re-
views), in particular, on phenomenology, including sets of standing bumps
(Amari, 1977; Laing, Troy, Gutkin, & Ermentrout, 2002), moving bumps
(Zhang, 1996; Fung, Wong, & Wu, 2010), traveling waves, and wave fronts
(Amari, 1977; Ermentrout & McLeod, 1993; Pinto & Ermentrout, 2001), spi-
ral waves (Huang et al., 2004; Laing, 2005) and breathers (Folias & Bressloff,
2004, 2005), and on applications including traveling waves in brain slices
(Richardson, Schiff, & Gluckman, 2005), working memory (Laing et al.,
2002), head direction cells (Zhang, 1996), visual hallucinations (Ermentrout
& Cowan, 1979), motion perception (Giese, 1998), robotic control (Erlhagen
& Bicho, 2006), movement preparation (Erlhagen & Schöner, 2002), and
population coding (Wu, Amari, & Nakahara, 2002).

There are two different types of activity in neural field models. One is
wavelike, spreading over the entire field and including repetitive wave pat-
terns, traveling waves, spiral and breathing waves, and self-reproducing ra-
dial waves. This type is observed in many situations, including epilepsy and
hallucinations. The other is a localized excitation behaving like a particle. It
is assumed in working memory theory that such particle-like activities are
used as excitations (standing bumps) to keep a memory of outside stimuli
as a persistent excitation of local positions. When the field sustains a stable
moving particle represented in the form of a localized region of excitation,
we may call this excitation a traveling bump.

As particle-like patterns, traveling bumps or localized traveling waves
deserve investigation since they are observed as spatiotemporal patterns of
populational neuronal firing activities in many brain areas (Delaney et al.,
1994; Ermentrout & Kleinfield, 2001; Prechtl, Cohen, Mitra, Pesaran, & Kle-
infeld, 1997; Wu, Guan, & Tsau, 1999; Wu, Huang, & Zhang, 2008). Amari
(1977) proved the existence of a traveling wave in a 1D field consisting of
layers of excitatory neurons and inhibitory neurons. Pinto and Ermentrout
(2001) modified Amari’s model, using only one spatial convolution term.
The model fits the traveling waves measured in brain slices in their exper-
iments. They obtained a traveling wave solution to their model by using
perturbation methods. They also showed that the velocity of the traveling
waves is a decreasing function of the firing threshold (a constant in their
model). Later, this prediction was confirmed in experiments on neocortex
slices (Richardson et al., 2005). Thus, the neural field model provides a pos-
sible answer to the question: How do traveling waves emerge in a neural
network?

However, although Amari (1977) and Pinto and Ermentrout (2001)
were mostly done in one dimension (1D), neurons are believed to be
distributed in at least two dimensions (2D). Therefore, it is desirable to
extend the range of study from 1D to 2D to find more interesting dynamical
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phenomena and richer applications. So far, target waves (Huang et al.,
2004, Folias & Bressloff, 2004), spiral waves (Huang et al., 2004; Laing,
2005), and breathers (Folias & Bressloff, 2004, 2005) have been found in
the 2D Pinto and Ermentrout (2001) model. In this study, we show the
existence of multiple stable traveling bumps, their collisions, and their
trajectory control in the 2D Pinto and Ermentrout (2001) model.

2 2D Neural Field

Let x = (x, y) be the coordinates of a 2D field and u(x, t) and v(x, t) be
excitatory and inhibitory variables at position x. The activation-inhibition
mechanism is described as

∂u(x, t)
∂t

= Luu [u(x, t)] + Luv [v(x, t)] (2.1)

∂v(x, t)
∂t

= Lvu [u(x, t)] + Lvv [v(x, t)] , (2.2)

where Luu, Luv, Lvu, and Lvv are operators representing interactions of the
field variables. The reaction-diffusion equation uses the linear Laplacian
diffusion mechanism for spatial interactions, together with pointwise non-
linear interactions, whereas the equation of a neural field uses nonlocal
interactions due to the synaptic connections of neurons, represented by a
spatial convolution of the type

Luu [u(x, t)] =
∫

w
(
x − x′) f

[
u

(
x′, t

)]
dx′, (2.3)

where f is a nonlinear function.
The typical equations for a 2D neural field are as follows:

∂u(x, t)
∂t

=
∫

w1
(
x − x′) f1

[
u

(
x′, t

) − h1
]

dx′

−
∫

w2
(
x − x′) f2

[
v

(
x′, t

) − h2
]

dx′

−u(x, t) + Iu(x, t), (2.4)

∂v(x, t)
∂t

=
∫

w3
(
x − x′) f3

[
u

(
x′, t

) − h3
]

dx′

−
∫

w4
(
x − x′) f4

[
v

(
x′, t

) − h4
]

dx′

−v(x, t) + Iv(x, t). (2.5)
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Here, u(x, t) and v(x, t) are the firing rates of excitatory and inhibitory
neurons, respectively, at position x and time t. The convolutive functions
w1(x − x′), . . . , w4(x − x′) represent the synaptic efficacies from position x′

to x. The functions f1, . . . , f4 denote the activation functions of neurons.
They are activated by u(x, t) and in turn inhibited by v(x, t). Iu(x, t) and
Iv(x, t) are inputs from the outside. We shall study the dynamical behaviors
of a homogeneous neural field where Iu(x, t) and Iv(x, t) are constants I ,
in particular, I = 0. Nonconstant Iu(x, t) and Iv(x, t) will be used for set-
ting the initial conditions and also for controlling the trajectory of bump
solutions.

The activation functions are sigmoidal functions or Heaviside functions
satisfying

0 ≤ fi (u) ≤ 1, for i = 1, 2, 3, 4, (2.6)

and the synaptic efficacy functions wi (x) ≥ 0 are radial symmetric, that is,
wi (x) are functions of ‖x‖, for i = 1, 2, 3, 4. Hence, the 2D neural field is
homogeneous and isotropic (rotationally invariant).

We shall show dynamical behaviors existing in a specific simple field
(Pinto & Ermentrout, 2001). Note that it is plausible that such phenom-
ena are common to other neural field models of nonlocal excitation and
inhibition (adaptation) mechanisms.

The neural field model can be regarded as a special case of the field
equation with excitation and inhibition mechanisms, similar to the standard
reaction-diffusion equation. Hence, the neural field and reaction-diffusion
models share lots of common dynamical characteristics in stationary and
moving patterns (Vanag & Epstein, 2007). While the reaction-diffusion
equation is restricted within local interactions due to diffusion, the neu-
ral field model has a spatially wide range of interactions (i.e., nonlocal
interactions) that exhibits richer dynamical phenomena. Our study shows
traveling bumps and their collisions, and we hope that it presents a new
direction of research for 2D neural field models. (Also see Nishiura, Ter-
amoto, & Ueda, 2003, 2005, 2007, and Ei, Mimura, & Nagayama, 2006, for
the various collision and scattering phenomena of traveling spots in the
reaction-diffusion equation with three components.)

3 Dynamical Phenomena of Traveling Bumps in a 2D
Neural Field

We use the following simple equations comprising a two-dimensional
extension of the model given by Pinto and Ermentrout (2001), Fo-
lias and Bressloff (2004, 2005), Huang et al. (2004), Laing (2005), and
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Richardson et al. (2005):

∂u(x, t)
∂t

=−u(x, t) +
∫

w
(
x − x′) f

[
u

(
x′, t

) − h
]

dx′

−v(x, t) + Iu(x, t), (3.1)

∂v(x, t)
∂t

=αu(x, t) − βv(x, t) + Iv(x, t). (3.2)

The parameters are:

α = 0.6, β = 0.8/3, h = 3.0,

w(x, y) = 7.32e− x2+y2
2 , f [u] = 1

1 + e−2(u−4)
. (3.3)

For the numerical experiments for figure exhibition, we discretized the
model (see equations 3.1 and 3.2) into a 200 × 200 grid with cyclic boundary
conditions, using the fourth-order Runge-Kutta method in Matlab. The
spatial resolution was 0.1, and the time step unit was 0.1.

3.1 Stable Traveling Bump. Our numerical experiments suggest that
the field can be tristable, admitting the quiescent state, a stable traveling
bump (see Figure 1), and a traveling band solution growing to infinite
length. We set the initial excitation region with a length l, which is a natural
stimulus such as excitatory stimuli around a position and inhibitory stimuli
at a slightly different positions. The stimuli are not symmetric enough to
generate a traveling bump. When l is too large, the bump converges to the
traveling band solution obtained with the corresponding 1D model. When
l is close to the characteristic scale l0, it converges to a traveling bump with
a fixed shape. When l is too small, the bump shrinks and disappears, con-
verging to a quiescent state (see Figure 2). In the parameter region around
h ∼ 3.0, starting with a fixed initial excitation region with a length l = l0 ∼ 9
(90 grids in the numerical simulation with spatial resolution 0.1), traveling
bumps occur. Furthermore, with the initial condition l = l0 in this parameter
region, the traveling bump is locally stable; that is, it resists small pertur-
bations. By adding large perturbations, it converges to either the traveling
band solution or the quiescent state, implying that the field is tristable.

A traveling bump has a crescent shape. The curvature of the excited re-
gion is positive in the front area and negative in the rear area. Such a crescent
shape is typically observed in, for example, chemical reactions (Schenk, Or-
Guil, Bode, & Purwins, 1997; Vanag & Epstein, 2007), patterns of seashells
(Meinhardt & Klinger, 1987), and barchans in sand dune (Schwammle &
Herrmann, 2003), caused by symmetry breaking by forward motion. The
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Figure 1: (a–e) Stable traveling bump of u. (f–j) Stable traveling bump of v.
Color denotes the value of u(x, y, t) and v(x, y, t). The initial excitation region
was l = l0 (90 grid points in the numerical simulations). The boundary condition
is cyclic, and the entire space is on a torus.

Figure 2: Stable traveling bump and phase diagram.(Left) x and y are the
coordinates of the field of u(x, y, t). A snapshot of a stable traveling bump
at the time step t = 100 is depicted. Color denotes the value of u(x, y, t).
(Right) The horizontal axis is the threshold parameter h, and the vertical axis is
perturbation to the bump shape given by the initial condition of length l. The
traveling bumps occur in the parameter region around h ∼ 3.0, starting with
a fixed initial excitation region with length l = l0 ∼ 9. To check the stability of
a traveling bump, we uniformly add a positive and negative perturbation to
u with size �l. When �l is a large, positive number, the bump grows into the
band solution, and when it is a large, negative number, it disappears into the
quiescent state, implying that the field is tristable.
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origin of the shape and the length scale in our case may be analyzed better
by comparing the local structure in 1D neural field model with excitatory
coupling (Drover & Ermentrout, 2003).

In the 2D two-component reaction-diffusion equation, the existence of
spatially localized traveling objects has not been reported with more than
local operators (Vanag & Epstein, 2007). It is known that global opera-
tors added to two-component systems may induce a single stable travel-
ing bump but not induce multiple solutions (Schenk et al., 1997), while
many three-component systems with local operators show multiple travel-
ing bumps. Here, we show an example of multiple stable traveling bumps
in a 2D neural field model. It is a two-component system with nonlocal
operators. In our case, the spatial convolution term plays the role of the
third component to stabilize the bump, and nonlocal interaction supports
multiple solutions. Exact nonlinear analysis will be done elsewhere.

3.2 Collisions of Traveling Bumps. A number of traveling bumps may
coexist in a field, and they strongly interact when they are close. The typical
interaction is a collision. When two bumps collide, they fuse into a single
bump. The resulting bump converges to one of the tristable states depending
on the collision angle (see Figure 3). We found no standing objects other
than the traveling bumps in the parameter settings (see equation 3.3) so
that even with complex collisions, the resulting output is thought to be
only one of the following: (a) quiescent state, (a) stable traveling bump, or
(a) growing band solution.

Eight other types of collisions are collected in Figure 4, showing patterns
before, in, and after collisions. For collisions of three or more bumps, the
temporal sequence of the collision is vital to the subsequent behavior. For
example, types d and g are collisions of two horizontal traveling bumps
coming toward each other and a vertical traveling bump coming toward
them. Depending on the timing of the vertical traveling bump’s arrival,
different behaviors occur after the collision. Types g and h are collisions
of three horizontal traveling bumps. Two traveling bumps collide before
the arrival of the third one. In type g, the field eventually converges to a
quiescent state after the collision, whereas in type h, an expanding bump
emerges after the collision.

3.3 Control of Traveling Bumps. In obtaining stable traveling bumps,
the external inputs Iu and Iv are put equal to 0, which means their dynami-
cal phenomena represent spontaneous neural activities. In this section, we
use external inputs to control traveling bumps spatially and temporally.
External inputs are also used for setting an initial state. Neural excitations
are extinguished by giving a constant negative external input to the whole
field.

Figure 5 shows an example of how the trajectory of a traveling bump is
altered by inputs Iu and Iv .
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Figure 3: Collision of bumps. When two bumps collide (upper row), they fuse
into a single bump (middle row). The parameters are fixed as in equation 3.3.
The resulting bump converges to a growing band solution, with a collision angle
less than 1

4 π , or to a quiescent state, with a collision angle more than 1
2 π , or it

survives, with a collision angle around ∼ 3
8 π (bottom row).

Let us define the center of gravity of a traveling bump u(x, t) by

r(t) = 1
M

∫
x f [u(x, t) − h] dx, (3.4)

where

M =
∫

f [u(x, t) − h] dx. (3.5)

When the bump moves stationarily, the velocity dr(t)/dt is a fixed constant.
Assume that a control signal Iu(x) added to the field at time 0, u(x, t) is
altered by δu(x, t) after time δt,

δu(x, 0) = Iu(x)δt. (3.6)

This causes an extra change δr to the center of gravity of the traveling bump,
which can be written in the form

δr = δt
∫

k(x)Iu(x) dx. (3.7)

The function k(x) is the influence function of external stimuli, and it shows
the influence of a unit stimulus added at x on the center of gravity.



1256 Y. Lu, Y. Sato, and S.-i. Amari

Figure 4: Collision types (a–h) Patterns before, in, and after collision. The pa-
rameters are fixed as in equation 3.3. Types d and g are collisions of two horizon-
tal traveling bumps coming toward each other and a vertical traveling bump
coming toward them. Types g and h are collisions of three horizontal traveling
bumps. In type g, the field eventually converges to a quiescent state after the
collision, whereas in type h, an expanding bump emerges after the collision.

Figure 5: Control of a stable traveling bump. The parameters are fixed as in
equation 3.3. External perturbations are added to u, v at the time step72.
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The influence curve is calculated from the subsequent variation due to
δu:

δr = δ

[
x f (u − h) dx

M(u)

]
(3.8)

= 1
M

∫
x f ′[u(x) − h]δu dx − 1

M2

∫
x f [u(x) − h] dxδM (3.9)

= δt
M

∫
(x − r) f ′ [u(x) − h] Iu(x) dx. (3.10)

Hence, the influence curve is

k(x) = 1
M

(x − r) f ′ [u(x) − h] , (3.11)

which shows that the influence is large at the positions x where f ′ is large.
Now let us consider Iu(x) = I = const as a special case. Imagine a bump

moving in the x-direction. Then new application of I causes a change of the
center of gravity by δs in the x-direction. This is calculated as

δs = δt
I
M

∫
x f ′[u(x) − h] dx (3.12)

= −δt
I
M

∫
f [u(x) − h] dx (3.13)

= −δt I. (3.14)

This shows that the velocity s of the bump changes as a result of this
perturbation by the above equation.

4 Discussion

In addition to standing bumps, moving bumps, spiral waves, breathers, and
target waves, this study has found a new pattern, called a traveling bump,
in a 2D neural field. In our numerical experiments, it seems that standing
bumps do not exist in the model and target waves do not coexist with
traveling bumps within the same parameters set. Whether it is possible
to use external inputs to switch from one solution to another, say, from
traveling bumps to spiral waves, is not known. More mathematical analysis
of traveling bumps and their controls will have to be conducted to determine
an answer.

Apart from the model we used, there are three other similar neural field
models with excitation-inhibition mechanisms:
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� Excitatory neurons and inhibitory neurons (Amari, 1977):
∂u(x, t)

∂t
=−u(x, t) +

∫
w1(x − x′) f [u(x′, t) − h1] dx′

−
∫

w2(x − x′) f [v(x′, t) − h2] dx′ (4.1)

∂v(x, t)
∂t

=−αv(x, t) + β f [u(x′, t) − h3] (4.2)
� Excitatory neurons with adaptive synapses (Kilpatrick & Bressloff,

2010):
∂u(x, t)

∂t
=−u(x, t) +

∫
w(x − x′)v(x′, t) f [u(x′, t) − h1] dx′ (4.3)

∂v(x, t)
∂t

=−αv(x, t) − βv(x, t) f [u(x, t) − h2] + γ (4.4)
� Excitatory neurons with an adaptive threshold (Coombes & Owen,

2005)

∂u(x, t)
∂t

=−u(x, t) +
∫

w(x − x′) f [u(x′, t) − v(x′, t)] dx′ (4.5)

∂v(x, t)
∂t

=−αv(x, t) + β f [u(x, t) − h] + γ (4.6)

If we use βu(x, t) instead of β f [u(x, t) − θ0] in equation 4.5, model 3
is equivalent to the Pinto and Ermentrout (2001) model. Whether stable
traveling bumps can exist in models 1, 2, and 3 is not known.

Using the parameter set in equation 3.3 for the Pinto and Ermentrout
(2001) model, we found the stable traveling bumps. Our work demonstrates
the existence of traveling bumps in a 2D neural network consisting of
identical neurons. The stability of these localized traveling excitations does
not require any geometric restriction or boundary to prevent them from
propagating away, and this fact may shed light on how neurons in brain
are organized.
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