Bidirectionally Self-Normalizing Neural Networks

Yao Lu
Peking University \& ANU \& CSIRO/Data61

Neural Networks

$$
\begin{aligned}
& \text { 0- } \\
& \text {-0- } \\
& \text { oo- } \\
& \text { Oose }
\end{aligned}
$$

Neural Networks

Universal Function Approximator
$F: \mathbb{R} \rightarrow \mathbb{R}$ is continuous
$F: \mathbb{R} \rightarrow \mathbb{R}$ is continuous
Cantor function

Weierstrass function

Function Approximation

$F: \mathbb{R} \rightarrow \mathbb{R}$ is continuous

$$
F(x) \approx f_{N}(x)+f_{N-1}(x)+\ldots+f_{0}(x)
$$

Function Approximation

$F: \mathbb{R} \rightarrow \mathbb{R}$ is continuous

$$
F(x) \approx f_{N}(x)+f_{N-1}(x)+\ldots+f_{0}(x)
$$

- $f_{n}(x)=a_{n} x^{n}$
- $f_{n}(x)=a_{n} \cos (n x)+b_{n} \sin (n x)$

Polynomial

Fourier series

Function Approximation

$F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is continuous

$$
F(\mathbf{x}) \approx f_{N}(\mathbf{x})+f_{N-1}(\mathbf{x})+\ldots+f_{0}(\mathbf{x})
$$

Function Approximation

$F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is continuous

$$
F(\mathbf{x}) \approx f_{N}(\mathbf{x})+f_{N-1}(\mathbf{x})+\ldots+f_{0}(\mathbf{x})
$$

- $f_{n}(\mathbf{x})=a_{n} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{n}\right\|\right)$

Radial basis function

$$
f_{n}(\mathbf{x})=a_{n} K\left(\mathbf{x}, \mathbf{x}_{n}\right)
$$

Kernel method

Superposition

$$
F(\mathbf{x}) \approx f_{N}(\mathbf{x})+f_{N-1}(\mathbf{x})+\ldots+f_{0}(\mathbf{x})
$$

Superposition

$$
F(\mathbf{x}) \approx f_{N}(\mathbf{x})+f_{N-1}(\mathbf{x})+\ldots+f_{0}(\mathbf{x})
$$

Composition

$$
F(\mathbf{x}) \approx f_{N} \circ f_{N-1} \circ \ldots \circ f_{0}(\mathbf{x})
$$

Superposition

$$
F(\mathbf{x}) \approx f_{N}(\mathbf{x})+f_{N-1}(\mathbf{x})+\ldots+f_{0}(\mathbf{x})
$$

Composition

$$
F(\mathbf{x}) \approx f_{N} \circ f_{N-1} \circ \ldots \circ f_{0}(\mathbf{x})
$$

Math difficulties

- Approximation

What F and f ? How deep? How wide? How accurate?

Superposition

$$
F(\mathbf{x}) \approx f_{N}(\mathbf{x})+f_{N-1}(\mathbf{x})+\ldots+f_{0}(\mathbf{x})
$$

Composition

$$
F(\mathbf{x}) \approx f_{N} \circ f_{N-1} \circ \ldots \circ f_{0}(\mathbf{x})
$$

Math difficulties

- Approximation

What F and f ? How deep? How wide? How accurate?

- Optimization How to choose $\boldsymbol{\theta}_{n}$ in $f_{n}\left(\mathbf{x}, \boldsymbol{\theta}_{n}\right)$?

Problem: Vanishing/Exploding Gradients

Problem: Vanishing/Exploding Gradients

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

where $\mathbf{x}^{(1)}$ is the input and $\mathbf{x}^{(L+1)}$ is the output

Problem: Vanishing/Exploding Gradients

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

where $\mathbf{x}^{(1)}$ is the input and $\mathbf{x}^{(L+1)}$ is the output

Backward pass

$$
\mathbf{y}^{(L)}=\phi^{\prime}\left(\mathbf{h}^{(L)}\right) \circ \frac{\partial E}{\partial \mathbf{x}^{(L+1)}}
$$

Problem: Vanishing/Exploding Gradients

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

where $\mathbf{x}^{(1)}$ is the input and $\mathbf{x}^{(L+1)}$ is the output

Backward pass

$$
\mathbf{y}^{(L)}=\phi^{\prime}\left(\mathbf{h}^{(L)}\right) \circ \frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\phi^{\prime}\left(\mathbf{h}^{(l)}\right) \circ\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

Problem: Vanishing/Exploding Gradients

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

where $\mathbf{x}^{(1)}$ is the input and $\mathbf{x}^{(L+1)}$ is the output

Backward pass

$$
\mathbf{y}^{(L)}=\phi^{\prime}\left(\mathbf{h}^{(L)}\right) \circ \frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\phi^{\prime}\left(\mathbf{h}^{(l)}\right) \circ\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

Gradient

$$
\frac{\partial E}{\partial \mathbf{W}^{(l)}}=\mathbf{y}^{(l)} \mathbf{x}^{(l) T}
$$

Problem: Vanishing/Exploding Gradients

Problem: Vanishing/Exploding Gradients

A simple network of 20 layers of 500 units, $\phi(x)=\frac{1}{1+\exp (-x)}$

Problem: Vanishing/Exploding Gradients

A simple network of 20 layers of 500 units, $\phi(x)=\frac{1}{1+\exp (-x)}$
$\mathbf{x}^{(1)} \sim \mathcal{N}(0, \mathbf{I})$ and $\mathbf{t} \sim \mathcal{N}(0, \mathbf{I})$

Problem: Vanishing/Exploding Gradients

A simple network of 20 layers of 500 units, $\phi(x)=\frac{1}{1+\exp (-x)}$
$\mathbf{x}^{(1)} \sim \mathcal{N}(0, \mathbf{I})$ and $\mathbf{t} \sim \mathcal{N}(0, \mathbf{I})$

- $\mathbf{W}^{(l)} \sim \mathcal{N}(0, \mathbf{I})$

Problem: Vanishing/Exploding Gradients

A simple network of 20 layers of 500 units, $\phi(x)=\frac{1}{1+\exp (-x)}$
$\mathbf{x}^{(1)} \sim \mathcal{N}(0, \mathbf{I})$ and $\mathbf{t} \sim \mathcal{N}(0, \mathbf{I})$

- $\mathbf{W}^{(l)} \sim \mathcal{N}(0, \mathbf{I})$

- $\mathbf{W}^{(l)} \sim \mathcal{N}(0,0.01 \mathbf{I})$

Problem: Vanishing/Exploding Gradients

Gradients have the same scale \rightarrow easy to solve

Problem: Vanishing/Exploding Gradients

Gradients have the same scale \rightarrow easy to solve
Example

$$
\min _{\boldsymbol{\theta}} \boldsymbol{\theta}^{T} \mathbf{Q} \boldsymbol{\theta}
$$

where

$$
\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}\right), \quad \mathbf{Q}=\left(\begin{array}{cc}
0.01 & 0 \\
0 & 1
\end{array}\right)
$$

Problem: Vanishing/Exploding Gradients

Gradients have the same scale \rightarrow easy to solve
Example

$$
\min _{\boldsymbol{\theta}} \boldsymbol{\theta}^{T} \mathbf{Q} \boldsymbol{\theta}
$$

where

$$
\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}\right), \quad \mathbf{Q}=\left(\begin{array}{cc}
0.01 & 0 \\
0 & 1
\end{array}\right)
$$

Gradient Descent

$$
\begin{aligned}
& \theta_{1} \leftarrow(1-0.01 \eta) \theta_{1} \\
& \theta_{2} \leftarrow(1-\eta) \theta_{2}
\end{aligned}
$$

Problem: Vanishing/Exploding Gradients

Sepp Hochreiter (1991)

Problem: Vanishing/Exploding Gradients

Sepp Hochreiter (1991)

" His work formally showed that deep neural networks are hard to train, because they suffer from the now famous problem of vanishing or exploding gradients"

Sepp Hochreiter's Fundamental Deep Learning Problem
-Jürgen Schmidhuber

Problem: Vanishing/Exploding Gradients

A simple solution

$$
\mathbf{W}_{l} \leftarrow \mathbf{W}_{l}-\eta \frac{\partial E}{\partial \mathbf{W}^{(l)}} /\left\|\frac{\partial E}{\partial \mathbf{W}^{(l)}}\right\|_{F}
$$

Problem: Vanishing/Exploding Gradients

A simple solution

$$
\mathbf{W}_{l} \leftarrow \mathbf{W}_{l}-\eta \frac{\partial E}{\partial \mathbf{W}^{(l)}} /\left\|\frac{\partial E}{\partial \mathbf{W}^{(l)}}\right\|_{F}
$$

Drawbacks

- for fixed η, it does not converge

Problem: Vanishing/Exploding Gradients

A simple solution

$$
\mathbf{W}_{l} \leftarrow \mathbf{W}_{l}-\eta \frac{\partial E}{\partial \mathbf{W}^{(l)}} /\left\|\frac{\partial E}{\partial \mathbf{W}^{(l)}}\right\|_{F}
$$

Drawbacks

- for fixed η, it does not converge
- for adaptive η, it is hard to tune learning rate schedule

Problem: Vanishing/Exploding Gradients

Tricks

- adaptive gradients (e.g., Adam)
- batch normalization
- gradient clipping
- shortcut connections

Bidirectionally Self-Normalizing Neural Networks

The Vanishing/Exploding Gradients problem is provably solved for deep nonlinear networks!

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

Backward pass

$$
\mathbf{y}^{(L)}=\phi^{\prime}\left(\mathbf{h}^{(L)}\right) \circ \frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\phi^{\prime}\left(\mathbf{h}^{(l)}\right) \circ\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

Gradient

$$
\frac{\partial E}{\partial \mathbf{W}^{(l)}}=\mathbf{y}^{(l)} \mathbf{x}^{(l) T}
$$

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

Backward pass

$$
\mathbf{y}^{(L)}=\phi^{\prime}\left(\mathbf{h}^{(L)}\right) \circ \frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\phi^{\prime}\left(\mathbf{h}^{(l)}\right) \circ\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

Gradient

$$
\frac{\partial E}{\partial \mathbf{W}^{(l)}}=\mathbf{y}^{(l)} \mathbf{x}^{(l) T}
$$

Idea
Constrain $\mathbf{x}^{(l)}$ and $\mathbf{y}^{(l)}$

Definition (Bidirectional Self-Normalization)

$$
\begin{aligned}
& \left\|\mathbf{x}^{(1)}\right\|_{2}=\left\|\mathbf{x}^{(2)}\right\|_{2}=\ldots=\left\|\mathbf{x}^{(L)}\right\|_{2} \\
& \left\|\mathbf{y}^{(1)}\right\|_{2}=\left\|\mathbf{y}^{(2)}\right\|_{2}=\ldots=\left\|\mathbf{y}^{(L)}\right\|_{2}
\end{aligned}
$$

Definition (Bidirectional Self-Normalization)

$$
\begin{aligned}
\left\|\mathbf{x}^{(1)}\right\|_{2} & =\left\|\mathbf{x}^{(2)}\right\|_{2}=\ldots=\left\|\mathbf{x}^{(L)}\right\|_{2} \\
\left\|\mathbf{y}^{(1)}\right\|_{2} & =\left\|\mathbf{y}^{(2)}\right\|_{2}=\ldots=\left\|\mathbf{y}^{(L)}\right\|_{2}
\end{aligned}
$$

Proposition
If a neural network is bidirectionally self-normalizing, then

$$
\left\|\frac{\partial E}{\partial \mathbf{W}^{(1)}}\right\|_{F}=\left\|\frac{\partial E}{\partial \mathbf{W}^{(2)}}\right\|_{F}=\ldots=\left\|\frac{\partial E}{\partial \mathbf{W}^{(L)}}\right\|_{F}
$$

How to enforce the constraints?

$$
\begin{aligned}
\left\|\mathbf{x}^{(1)}\right\|_{2} & =\left\|\mathbf{x}^{(2)}\right\|_{2}=\ldots=\left\|\mathbf{x}^{(L)}\right\|_{2} \\
\left\|\mathbf{y}^{(1)}\right\|_{2} & =\left\|\mathbf{y}^{(2)}\right\|_{2}=\ldots=\left\|\mathbf{y}^{(L)}\right\|_{2}
\end{aligned}
$$

If $\phi(x)=x$

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\mathbf{h}^{(l)}
$$

Backward pass

$$
\mathbf{y}^{(L)}=\frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

If $\phi(x)=x$

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\mathbf{h}^{(l)}
$$

Backward pass

$$
\mathbf{y}^{(L)}=\frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

Then $\mathbf{W}^{(l)}$ is orthogonal

If $\phi(x)$ is nonlinear

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

Backward pass

$$
\mathbf{y}^{(L)}=\phi^{\prime}\left(\mathbf{h}^{(L)}\right) \circ \frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\phi^{\prime}\left(\mathbf{h}^{(l)}\right) \circ\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

Can $\left\|\mathbf{x}^{(l)}\right\|_{2}$ and $\left\|\mathbf{y}^{(l)}\right\|_{2}$ be preserved?

If $\phi(x)$ is nonlinear

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

Backward pass

$$
\mathbf{y}^{(L)}=\phi^{\prime}\left(\mathbf{h}^{(L)}\right) \circ \frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\phi^{\prime}\left(\mathbf{h}^{(l)}\right) \circ\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

Can $\left\|\mathbf{x}^{(l)}\right\|_{2}$ and $\left\|\mathbf{y}^{(l)}\right\|_{2}$ be preserved?

No, in general!

Mazur-Ulam Theorem

If V and W are normed space over \mathbb{R} and the mapping

$$
f: V \rightarrow W
$$

is surjective isometry, then f is affine.

If $\phi(x)$ is nonlinear
Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

Backward pass

$$
\mathbf{y}^{(L)}=\phi^{\prime}\left(\mathbf{h}^{(L)}\right) \circ \frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\phi^{\prime}\left(\mathbf{h}^{(l)}\right) \circ\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

Can $\left\|\mathbf{x}^{(l)}\right\|$ and $\left\|\mathbf{y}^{(l)}\right\|$ be preserved?

No, in general!

If $\phi(x)$ is nonlinear

Forward pass

$$
\mathbf{h}^{(l)}=\mathbf{W}^{(l)} \mathbf{x}^{(l)}, \quad \mathbf{x}^{(l+1)}=\phi\left(\mathbf{h}^{(l)}\right)
$$

Backward pass

$$
\mathbf{y}^{(L)}=\phi^{\prime}\left(\mathbf{h}^{(L)}\right) \circ \frac{\partial E}{\partial \mathbf{x}^{(L+1)}}, \quad \mathbf{y}^{(l)}=\phi^{\prime}\left(\mathbf{h}^{(l)}\right) \circ\left(\mathbf{W}^{(l+1)}\right)^{T} \mathbf{y}^{(l+1)}
$$

Can $\left\|\mathbf{x}^{(l)}\right\|$ and $\left\|\mathbf{y}^{(l)}\right\|$ be preserved?
No, in general!

Yes, roughly! $\left\|\mathbf{x}^{(l+1)}\right\|_{2} \approx\left\|\mathbf{x}^{(l)}\right\|_{2}$ and $\left\|\mathbf{y}^{(l+1)}\right\|_{2} \approx\left\|\mathbf{y}^{(l)}\right\|_{2}$.

High-Dimensional Probability

High-Dimensional Probability

$\mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{n}\right)$

High-dimensional

Concentration of Measure

High-Dimensional Probability

Lemma

- $\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)$
$-f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz and $\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[f(z)^{2}\right]=1$

$$
\|f(\mathbf{z})\|_{2} \approx\|\mathbf{z}\|_{2} \text { as } d \rightarrow \infty
$$

High-Dimensional Probability

Lemma

- $\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)$
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz and $\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[f(z)^{2}\right]=1$

$$
\|f(\mathbf{z})\|_{2} \approx\|\mathbf{z}\|_{2} \text { as } d \rightarrow \infty
$$

```
z = torch.randn(10000)
f = 1.4674 * torch.tanh(z) + 0.3885
print(z.norm(), f.norm())
```


High-Dimensional Probability

Lemma

- $\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)$
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz and $\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[f(z)^{2}\right]=1$

$$
\|f(\mathbf{z})\|_{2} \approx\|\mathbf{z}\|_{2} \text { as } d \rightarrow \infty
$$

```
z = torch.randn(10000)
f = 1.4674 * torch.tanh(z) + 0.3885
print(z.norm(), f.norm())
```

tensor (98.8555) tensor (99.8824)
tensor (99.2121) tensor (98.8777)
tensor(100.5818) tensor (99.9690)

High-Dimensional Probability

Lemma

- $\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)$
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz and $\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[f(z)^{2}\right]=1$
- $\mathbf{x} \in \mathbb{R}^{d}$ with bounded $\|\mathbf{x}\|_{\infty}$

$$
\|f(\mathbf{z}) \circ \mathbf{x}\|_{2} \approx\|\mathbf{x}\|_{2} \text { as } d \rightarrow \infty
$$

High-Dimensional Probability

Lemma

- $\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)$
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz and $\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[f(z)^{2}\right]=1$
- $\mathrm{x} \in \mathbb{R}^{d}$ with bounded $\|\mathrm{x}\|_{\infty}$

$$
\|f(\mathbf{z}) \circ \mathbf{x}\|_{2} \approx\|\mathbf{x}\|_{2} \text { as } d \rightarrow \infty
$$

```
z = torch.randn(10000)
f = 1.4674 * torch.tanh(z) + 0.3885
x = torch.rand(10000)
y = f * x
print(x.norm(), y.norm())
```


High-Dimensional Probability

Lemma

- $\mathrm{z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right)$
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz and $\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[f(z)^{2}\right]=1$
- $\mathbf{x} \in \mathbb{R}^{d}$ with bounded $\|\mathbf{x}\|_{\infty}$

$$
\|f(\mathbf{z}) \circ \mathbf{x}\|_{2} \approx\|\mathbf{x}\|_{2} \text { as } d \rightarrow \infty
$$

```
z = torch.randn(10000)
\(\mathrm{f}=1.4674\) * torch. \(\tanh (\mathrm{z})+0.3885\)
\(\mathrm{x}=\) torch.rand(10000)
\(y=f * x\)
print(x.norm(), y.norm())
```

tensor(57.6663) tensor(58.2298)
tensor(58.2302) tensor(58.2693)
tensor(57.5398) tensor(57.9497)

Lemma
If \mathbf{W} is orthogonal and uniformly distributed and $\|\mathbf{x}\|_{2}=\sqrt{d}$, then

$$
\mathbf{W} \mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right) \text { as } d \rightarrow \infty
$$

Lemma

If \mathbf{W} is orthogonal and uniformly distributed and $\|\mathbf{x}\|_{2}=\sqrt{d}$, then

$$
\mathbf{W} \mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right) \text { as } d \rightarrow \infty
$$

```
Z = torch.randn(5000, 5000)
Z = Z / Z.pow(2).sum(0, True).sqrt()
U, -, V = torch.svd(Z, compute_uv=True)
W = U @ V.t
```


Lemma

If \mathbf{W} is orthogonal and uniformly distributed and $\|\mathbf{x}\|_{2}=\sqrt{d}$, then

$$
\mathbf{W} \mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right) \text { as } d \rightarrow \infty
$$

```
Z = torch.randn(5000, 5000)
Z = Z / Z.pow(2).sum(0, True).sqrt()
U, -, V = torch.svd(Z, compute_uv=True)
W = U @ V.t
x = torch.ones(5000, 1)
y = W @ x
```


Lemma

If \mathbf{W} is orthogonal and uniformly distributed and $\|\mathbf{x}\|_{2}=\sqrt{d}$, then

$$
\mathbf{W} \mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right) \text { as } d \rightarrow \infty
$$

```
Z = torch.randn(5000, 5000)
Z = Z / Z.pow(2).sum(0, True).sqrt()
U, -, V = torch.svd(Z, compute_uv=True)
W = U @ V.t
x = torch.ones(5000, 1)
y = W @ x
plt.hist(y.numpy(), bins=100)
plt.show()
```

Lemma
If \mathbf{W} is orthogonal and uniformly distributed and $\|\mathbf{x}\|_{2}=\sqrt{d}$, then

$$
\mathbf{W} \mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right) \text { as } d \rightarrow \infty
$$

Lemma

If \mathbf{W} is orthogonal and uniformly distributed and $\|\mathbf{x}\|_{2}=\sqrt{d}$, then

$$
\mathbf{W} \mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right) \text { as } d \rightarrow \infty
$$

- $\|\mathbf{x}\|_{2} \approx \sqrt{d}$
- W is orthogonal and uniformly distributed
- ϕ and ϕ^{\prime} are Lipschitz
- $\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi(z)^{2}\right]=\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi^{\prime}(z)^{2}\right]=1$
- $\|\mathbf{x}\|_{2} \approx \sqrt{d}$
- W is orthogonal and uniformly distributed
- ϕ and ϕ^{\prime} are Lipschitz
- $\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi(z)^{2}\right]=\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi^{\prime}(z)^{2}\right]=1$

Theorem (Forward Norm-Preservation)
Random vector

$$
\|\phi(\mathbf{W} \mathbf{x})\|_{2} \rightarrow \sqrt{d}
$$

as $d \rightarrow \infty$.

- $\|\mathbf{x}\|_{2} \approx \sqrt{d}$
- W is orthogonal and uniformly distributed
- ϕ and ϕ^{\prime} are Lipschitz
$-\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi(z)^{2}\right]=\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi^{\prime}(z)^{2}\right]=1$
Theorem (Forward Norm-Preservation)
Random vector

$$
\|\phi(\mathbf{W} \mathbf{x})\|_{2} \rightarrow \sqrt{d}
$$

as $d \rightarrow \infty$.

Theorem (Backward Norm-Preservation)
Let $\mathbf{D}=\operatorname{diag}\left(\phi^{\prime}\left(\mathbf{w}_{1}^{T} \mathbf{x}\right), \ldots, \phi^{\prime}\left(\mathbf{w}_{d}^{T} \mathbf{x}\right)\right)$ and $\mathbf{y} \in \mathbb{R}^{d}$ be a fixed vector with bounded $\|\mathbf{y}\|_{\infty}$. Then

$$
\|\mathbf{D y}\|_{2}^{2} \rightarrow\|\mathbf{y}\|_{2}^{2}
$$

as $d \rightarrow \infty$.

Gaussian-Poincaré Normalization

$$
\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi(z)^{2}\right]=\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi^{\prime}(z)^{2}\right]=1
$$

Gaussian-Poincaré Normalization

$$
\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi(z)^{2}\right]=\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi^{\prime}(z)^{2}\right]=1
$$

Proposition

For almost any φ, there exist two constants a and b that

$$
\phi(x)=a \varphi(x)+b
$$

such that

$$
\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi(z)^{2}\right]=\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi^{\prime}(z)^{2}\right]=1
$$

Gaussian-Poincaré Normalization

$$
\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi(z)^{2}\right]=\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\phi^{\prime}(z)^{2}\right]=1
$$

	Tanh	ReLU	LeakyReLU	ELU	SELU	GELU
a	1.4674	1.4142	1.4141	1.2234	0.9660	1.4915
b	0.3885	0.0000	0.0000	0.0742	0.2585	-0.9097

Experiments

Simple network of 200 layer of 500 units with orthogonal $\mathbf{W}^{(l)}$

$$
\mathbf{x}^{(1)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \mathbf{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

Experiments

Simple network of 200 layer of 500 units with orthogonal $\mathbf{W}^{(l)}$

$$
\mathbf{x}^{(1)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \mathbf{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

Experiments

	MNIST		CIFAR-10	
	Train	Test	Train	Test
Tanh	99.05 (87.39)	96.57 (89.32)	80.84 (27.90)	42.71 (29.32)
Tanh-GPN	99.81 (84.93)	95.54 (87.11)	96.39 (25.13)	40.95 (26.58)
ReLU	11.24 (11.24)	11.35 (11.42)	10.00 (10.00)	10.00 (10.00)
ReLU-GPN	33.28 (11.42)	28.13 (11.34)	46.60 (10.09)	34.96 (9.96)
LeakyReLU	11.24 (11.24)	11.35 (11.63)	10.00 (10.21)	10.00 (10.06)
LeakyReLU-GPN	43.17 (11.19)	49.28 (11.66)	51.85 (9.89)	39.38 (10.00)
ELU	99.06 (98.24)	95.41 (97.48)	80.73 (42.39)	45.76 (44.16)
ELU-GPN	100.00 (97.86)	96.56 (96.69)	99.37 (43.35)	43.12 (44.36)
SELU	99.86 (97.82)	97.33 (97.38)	29.23 (46.47)	29.55 (45.88)
SELU-GPN	99.92 (97.91)	96.97 (97.39)	98.24 (47.74)	45.90 (45.52)
GELU	11.24 (12.70)	11.35 (10.28)	10.00 (10.43)	10.00 (10.00)
GELU-GPN	97.67 (11.22)	95.82 (9.74)	90.51 (10.00)	36.94 (10.00)

Table 1: Accuracy (percentage) of neural networks of depth 200 and width 500 with different activation functions on real-world data. The numbers in parenthesis denote the results when batch normalization is applied before the activation function.

Summary

We theoretically solved the vanishing/exploding gradients problem!

Summary

We theoretically solved the vanishing/exploding gradients problem!

Limitations

- Assumptions holds only at initialization
- Constraining the networks too much
- Only for MLP

