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Optimization

For f (θ) : Rn → R

min
θ

f (θ)

First order method

θ ← θ − η∇θf (θ)

Second order method

θ ← θ − ηG−1∇θf (θ)

I Newton method

I Natural gradient

I Adaptive gradient
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Second Order Optimization

θ ← θ − ηG−1∇θf (θ)

Compute G−1 is expensive.

Approximation is needed.



Approximation of G

θ ← θ − ηG−1∇θf (θ)



Approximation of G

θ ← θ − ηG−1∇θf (θ)

I Diagonal

I Block diagonal

I Low rank

I Kronecker product



Block Mean Approximation

(a) Original (b) Approximate



Block Mean Approximation
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can be represented by and with the size of
each block.
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Block Mean Approximation

The inverse of has the same block mean structure.

It can be computed by inverting a matrix of size and
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Theorem
For the non-singular matrix Λ̄ + B̄, where Λ̄ and B̄ are the
diagonal and full expansion of Λ and B with respect to the
partition vector s,

(Λ̄ + B̄)−1 = Λ̄−1 + D̄ (1)

where D̄ is the full expansion matrix with partition vector s of

D = (ΛS + SBS)−1 − (ΛS)−1 (2)

where S = diag(s).
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where S = diag(s).



Block Mean Approximation

(c) Original (d) Approximate



Optimal Block Mean Approximation

Proposition

The optimal block mean approximation of M with the partition
vector s according to the Frobenius norm

min
Λ̄,B̄
‖Λ̄ + B̄−M‖2

F (5)

is given by

bij =


0, i = j , si = 1,∑

mn Mii
mn−

∑
m Mii

mm

si (si−1) , i = j , si 6= 1,∑
mn Mij

mn

si sj
, i 6= j ,

(6)

λi =
1

si

∑
m

Mii
mm − bii . (7)



Block Mean Approximation

(e) Original (f) Approximate

For neural nets, each block can represent the weights in a layer.



AdaGrad

θt+1 = θt − ηH
−1/2
t gt

Ĥt = ZtFtZt ≈ Ht

where Zt is diagonal and Ft is a block mean approximation matrix.



Experiments

Table 1: Small model

Conv 3x3, 3
Max Pooling 2x2

Conv 3x3, 3
Max Pooling 2x2

Conv 3x3, 3
Max Pooling 2x2

Conv 3x3, 3
Max Pooling 2x2

Fully Connected, 10
Softmax, 10

Table 2: Large model

Conv 3x3, 32
Conv 3x3, 32
Conv 3x3, 32
Conv 3x3, 32

Max Pooling 2x2
Conv 3x3, 32
Conv 3x3, 32
Conv 3x3, 32
Conv 3x3, 32

Max Pooling 2x2
Conv 3x3, 32
Conv 3x3, 32
Conv 3x3, 32
Conv 3x3, 32

Max Pooling 2x2
Conv 3x3, 32
Conv 3x3, 32
Conv 3x3, 32
Conv 3x3, 32

Max Pooling 2x2
Fully Connected, 10

Softmax, 10



Experiments
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(g) CIFAR-10, small model
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(h) CIFAR-10, small model
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(i) CIFAR-10, large model
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(j) CIFAR-10, large model



Open Questions

I The right block structure?

P1WP2 in Analytic Study of Families of Spurious Minima in
Two-Layer ReLU Neural Networks, NeurIPS 2021

I Other applications (e.g. Gaussian processes)?


