Block Mean Approximation for Efficient Second Order Optimization

Yao Lu, Mehrtash Harandi, Richard Hartley, Razvan Pascanu

ANU \& Data61 \& Google DeepMind

November 25, 2023

Optimization

For $f(\boldsymbol{\theta}): \mathbb{R}^{n} \rightarrow \mathbb{R}$

Optimization

For $f(\boldsymbol{\theta}): \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\min _{\boldsymbol{\theta}} f(\boldsymbol{\theta})
$$

First order method

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\eta \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta})
$$

Second order method

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\eta \mathbf{G}^{-1} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta})
$$

Optimization

For $f(\theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\min _{\boldsymbol{\theta}} f(\boldsymbol{\theta})
$$

First order method

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\eta \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta})
$$

Second order method

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\eta \mathbf{G}^{-1} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta})
$$

- Newton method
- Natural gradient
- Adaptive gradient

Example: logistic regression

Logistic regression example, with $n=500, p=100$: we compare gradient descent and Newton's method, both with backtracking

Second Order Optimization

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\eta \mathbf{G}^{-1} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta})
$$

Compute \mathbf{G}^{-1} is expensive.
Approximation is needed.

Approximation of \mathbf{G}

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\eta \mathbf{G}^{-1} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta})
$$

Approximation of \mathbf{G}

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\eta \mathbf{G}^{-1} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta})
$$

- Diagonal
- Block diagonal
- Low rank
- Kronecker product

Block Mean Approximation

(a) Original

(b) Approximate

Block Mean Approximation

Block Mean Approximation

can be represented by \square and \square with the size of each block.

Block Mean Approximation

has the same block mean structure.

Block Mean Approximation

It can be computed by inverting a matrix of size \square and \square

Theorem

For the non-singular matrix $\overline{\mathbf{\Lambda}}+\overline{\mathbf{B}}$, where $\overline{\mathbf{\Lambda}}$ and $\overline{\mathbf{B}}$ are the diagonal and full expansion of $\mathbf{\Lambda}$ and \mathbf{B} with respect to the partition vector s,

$$
\begin{equation*}
(\overline{\boldsymbol{\Lambda}}+\overline{\mathbf{B}})^{-1}=\overline{\boldsymbol{\Lambda}}^{-1}+\overline{\mathbf{D}} \tag{1}
\end{equation*}
$$

where $\overline{\mathbf{D}}$ is the full expansion matrix with partition vector \mathbf{s} of

$$
\begin{equation*}
\mathbf{D}=(\boldsymbol{\Lambda} \mathbf{S}+\mathbf{S B S})^{-1}-(\boldsymbol{\Lambda} \mathbf{S})^{-1} \tag{2}
\end{equation*}
$$

where $\mathbf{S}=\operatorname{diag}(\mathbf{s})$.

Theorem
For the non-singular matrix $\overline{\mathbf{\Lambda}}+\overline{\mathbf{B}}$, where $\overline{\mathbf{\Lambda}}$ and $\overline{\mathbf{B}}$ are the diagonal and full expansion of $\mathbf{\Lambda}$ and \mathbf{B} with respect to the partition vector s,

$$
\begin{equation*}
(\overline{\boldsymbol{\Lambda}}+\overline{\mathbf{B}})^{-\frac{1}{2}}=\overline{\boldsymbol{\Lambda}}^{-\frac{1}{2}}+\overline{\mathbf{D}} \tag{3}
\end{equation*}
$$

where $\overline{\mathbf{D}}$ is the full expansion matrix with partition vector \mathbf{s} of

$$
\begin{equation*}
\mathbf{D}=\mathbf{S}^{-\frac{1}{2}}\left[\left(\boldsymbol{\Lambda}+\mathbf{S}^{\frac{1}{2}} \mathbf{B} \mathbf{S}^{\frac{1}{2}}\right)^{-\frac{1}{2}}-\boldsymbol{\Lambda}^{-\frac{1}{2}}\right] \mathbf{S}^{-\frac{1}{2}} \tag{4}
\end{equation*}
$$

where $\mathbf{S}=\operatorname{diag}(\mathbf{s})$.

Block Mean Approximation

(c) Original

(d) Approximate

Optimal Block Mean Approximation

Proposition

The optimal block mean approximation of M with the partition vector s according to the Frobenius norm

$$
\begin{equation*}
\min _{\overline{\boldsymbol{\Lambda}}, \overline{\mathbf{B}}}\|\overline{\boldsymbol{\Lambda}}+\overline{\mathbf{B}}-\mathbf{M}\|_{F}^{2} \tag{5}
\end{equation*}
$$

is given by

$$
\begin{align*}
b_{i j} & = \begin{cases}0, & i=j, s_{i}=1, \\
\frac{\sum_{m n} \mathbf{M}_{m n}^{i j}-\sum_{m} \mathbf{M}_{m m}^{i i}}{s_{i}\left(s_{i}-1\right)}, & i=j, s_{i} \neq 1, \\
\frac{\sum_{m n} \mathbf{M}_{m n}}{s_{i} s_{j}}, & i \neq j,\end{cases} \tag{6}\\
\lambda_{i} & =\frac{1}{s_{i}} \sum_{m} \mathbf{M}_{m m}^{i i}-b_{i i} . \tag{7}
\end{align*}
$$

Block Mean Approximation

For neural nets, each block can represent the weights in a layer.

AdaGrad

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\eta \mathbf{H}_{t}^{-1 / 2} \mathbf{g}_{t}
$$

$$
\widehat{\mathbf{H}}_{t}=\mathbf{Z}_{t} \mathbf{F}_{t} \mathbf{Z}_{t} \approx \mathbf{H}_{t}
$$

where \mathbf{Z}_{t} is diagonal and \mathbf{F}_{t} is a block mean approximation matrix.

Experiments

Table 1: Small model

```
    Conv 3x3, 3
    Max Pooling 2x2
        Conv 3x3, 3
    Max Pooling 2\times2
        Conv 3x3, 3
    Max Pooling 2x2
        Conv 3x3, 3
    Max Pooling 2x2
Fully Connected, 10
    Softmax, 10
```


Table 2: Large model

Conv $3 \times 3,32$
Conv $3 \times 3,32$
Conv $3 \times 3,32$
Conv $3 \times 3,32$
Max Pooling 2×2
Conv $3 \times 3,32$
Max Pooling 2×2
Conv $3 \times 3,32$
Max Pooling 2×2
Conv $3 \times 3,32$
Max Pooling 2×2
Fully Connected, 10
Softmax, 10

Experiments

(g) CIFAR-10, small model (h) CIFAR-10, small model

(i) CIFAR-10, large model (j) CIFAR-10, large model

Open Questions

- The right block structure?

$\mathbf{P}_{1} \mathbf{W P}_{2}$ in Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural Networks, NeurIPS 2021
- Other applications (e.g. Gaussian processes)?

