
An Algorithm for Maximum Common Subgraph

of Planar Triangulation Graphs

Yao Lu1, Horst Bunke2, and Cheng-Lin Liu1

1 National Lab of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences

yaolubrain@gmail.com, liucl@nlpr.ia.ac.cn
2 Institute of Computer Science and Applied Mathematics (IAM),

University of Bern
bunke@iam.unibe.ch

Abstract. We propose a new fast algorithm for solving the Maximum
Common Subgraph (MCS) problem. MCS is an NP-complete problem.
In this paper, we focus on a special class of graphs, i.e. Planar Trian-
gulation Graphs, which are commonly used in computer vision, pattern
recognition and graphics. By exploiting the properties of Planar Trian-
gulation Graphs and restricting the problem to connected MCS, for two
such graphs of size n and m and their maximum common subgraph of
size k, our algorithm solves the MCS problem approximately with time
complexity O(nmk).

Keywords: Planar Triangulation Graphs, Delauney Triangulation,
Maximum Common Subgraph.

1 Introduction

Images and many other objects can be represented as graphs. The graph repre-
sentation of an object characterizes its local features and their spatial relation-
ship. Its theoretical properties, applications and efficient algorithms have been
studied for decades [1]. Maximum Common Subgraph (MCS) is an important
problem in pattern recognition [2]. It incorporates graph isomorphism and sub-
graph isomorphism as special cases. It has applications in computer vision and
pattern recognition such as video indexing [3] and document classification [4].
However, MCS is known to be NP-complete in general. In order to obtain an
efficient algorithm of practical value, we need to specialize the problem and/or
look for approximate solutions.

In this paper, we focus on a special class of graphs, i.e. Planar Triangulation
Graphs. Planar Triangulation Graphs are commonly used in pattern recognition,
computer vision, and graphics. Perhaps the best known procedure to obtain
such a graph is Delaunay triangulation. It has important properties such as
sparseness, locality, and avoiding skinny angles in the triangulation. It has been
shown that not much spatial information is lost after Delaunay triangulation of
a set of points [5]. Moreover, Delaunay triangulation can be efficiently computed
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with time complexity O(n logn) by various methods [6]. And there are graph
matching algorithms specialized for Delaunay triangulation graphs [7, 8].

The main contribution of in this paper is a new algorithm for the MCS prob-
lem of Planar Triangulation Graphs that has a practical high execution speed.
By exploiting the properties of Planar Triangulation Graphs and restricting the
problem to connected MCS, we are able to derive an algorithm with time com-
plexity O(nmk), for approximately solving the MCS problem of two Planar
Triangulation Graphs of size n and m and their maximum common subgraph of
size k. Given two graphs, our algorithm will return a common subgraph, but it
is not guaranteed that it is a maximum common subgraph. However, our exper-
imental verification showed that most of the common subgraphs returned in our
experiments are in fact maximum common subgraphs, and those that are not
are missing only a small fraction of nodes and edges.

2 Connected Maximum Common Subgraphs

2.1 Basic Definitions

Definition 1. A graph is an ordered pair G = (V,E) comprising a set V of
nodes together with a set E � V × V of edges.

Remark. The graphs we assume in this paper are unweighted and undirected
graphs without node or edge attributes.

Definition 2. A subgraph of a graph G is a graph whose node set is a subset
of that of G, and whose adjacency relation is a subset of that of G restricted to
this subset.

Definition 3. An isomorphism of graphs G and H is a bijective function be-
tween the node sets of G and H, f : V (G) → V (H) such that any two nodes u
and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

Definition 4. A subgraph isomorphism from G to H is an injective function
f : V (G) → V (H) such that if there exists a subgraph S of H and f is a graph
isomorphism from G to S.

Definition 5. Let G, G1, and G2 be graphs. G is a common subgraph of G1 and
G2 if there exists a subgraph isomorphisms from G to G1 and from G to G2.

Definition 6. A common subgraph G of G1 and G2 is maximal if there exists
no other common subgraph G′ of G1 and G2 that has more edges than G.

Remark. This definition is given in [15] as Maximum Common Edge Subgraph.
The work described in this paper will be based on this kind of MCS. It is preferred
over Maximum Common Induced Subgraph for the reasons explained in [10, 15].

Definition 7. A graph is connected if there is a path from any node to any other
node in the graph.

Finding connected MCS is in general NP-complete since subgraph isomorphism
remains NP-complete even for connected graphs of bounded treewidth [9], which
is a special case of connected MCS.
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2.2 Related Work

Many exact algorithms for finding MCS have been proposed in the literature.
Two early examples are [10] and [11], which are based on backtrack search and
maximum clique detection in an association graph, respectively. Later algorithms
are described in [12–14]. All these algorithms have exponential time complexity.
Moreover, there are algorithms specialized for chemical structures [15], which
can achieve faster solutions in this domain than general MCS algorithms.

In this paper, we specialize on Planar Triangulation Graphs, a class of graphs
which are widely used in computer vision, pattern recognition and graphics.

3 Planar Triangulation Graphs

A Planar Triangulation Graph is obtained by triangulation of points in a plane.
See [6, 16] for references on triangulation. In Fig.1, we show an example obtained
by Delaunay triangulating a set of points in the two-dimensional plane.

Fig. 1. Delaunay Triangulation of a set of points in the two-dimensional plane

3.1 Properties

Planar triangulation graphs have two important properties [6].

Property 1. Each triangle of a Planar Triangulation Graph has at most three
adjacent triangles.

Property 2. A Planar Triangulation Graph of size n has O(n) triangles and
O(n) edges.

These properties allow us to design a fast algorithm for connected MCS of Planar
Triangulation Graphs, as will be shown in the following sections.
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3.2 Breadth-First Traversal of Triangles

In this subsection, we describe a method for traversing the triangles of a Planar
Triangulation Graph. Note that it is a traversal of triangles rather than of nodes.

Starting from a given ordered triangle of a Planar Triangulation Graph with a
triangle visiting order (e.g. clock-wise), there is a unique breadth-first traversal
of triangles of the graph. The breadth-first traversal process works as follows.
For example, in Fig. 2(a), let us take triangle e (with order 6-3-4) as the root
of the traversal. Then the adjacent triangles of the root triangle are visited in
clock-wise order. From edge 6-3, triangle d is visited, from edge 3-4, triangle
b is visited, and from edge 4-6, triangle f is visited. Then we continue the
process with triangle d, and so on. Except for the root triangle, for each visit of a
triangle, at most one new node is encountered. After the traversal is finished, the
visiting order of nodes 1 to 10 is: 4,5,2,3,8,1,7,9,10. The breadth-first traversal
of triangles can be represented as a tree, as shown in Fig. 2(b). By property 1,
this tree has a special structure: it has at most 3 children at its root node and
at most 2 children at the other nodes.

Given a triangle, its adjacent triangles can be found by using a hash table
with O(1) operations. And the hash table can be built with time complexity
O(n) since there are only O(n) triangles and each triangle has at most three
adjacent triangles. Therefore, for a Planar Triangulation Graph of size n, the
breadth-first traversal of triangles has time complexity O(n).
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Fig. 2. Breadth-First Traversal of Triangles

With these special properties and structures, we can derive an efficient heuris-
tic algorithm for finding connected MCS of a given pair of Planar Triangulation
Graphs, as shown in the next section.



166 Y. Lu, H. Bunke, and C.-L. Liu

4 Algorithm

The algorithm works as follows: starting with an arbitrarily chosen pair of or-
dered triangles as root in graphs G1 and G2, do a pair of breadth-first traversals
of triangles on both graphs simultaneously. The visiting orders of the nodes of
the initial pair triangles are 1, 2, 3. Two triangles of two graphs are matched and
added to their traversal if their corresponding nodes have the same node visiting
order. If a node has not been visited in the traversal yet, its node visiting order
is set to be 0. The process continues until no triangles can be added to the pair
of traversals. Finally, the graphs composed of the matched triangle pairs are the
MCS. A pseudo-code description of our algorithm is given in Algorithm 1.

As an example, consider finding the MCS of the graphs in Fig. 3(a). In Fig.
3(b), we start with ordered triangles 2-3-4 and b-c-e as the roots of the pair
of traversals. The visiting orders of nodes 2, 3, 4 and nodes b, c, e are 1, 2, 3,
respectively. Triangles 2-3-4 and b-c-e are matched and added to the traversal
since their corresponding nodes have the same node visiting order (all 0 now
and 1,2,3 after). From ordered triangle 2-3-4, triangles 2-3-1, 3-4-6 and 4-2-
5 are visited, in that order. And from ordered triangle b-c-e, triangles b-c-a,
c-e-f and e-b-d are visited, in that order. Next, triangles 2-3-1 and b-c-a are
matched since the the condition is satisfied, then triangles 3-4-6 and c-e-f, and
finally triangles 4-2-5 and e-b-d (Fig. 3(c)). However, triangle 4-5-6 cannot
be matched to either d-e-g or e-f-g because node 6’s node visiting order is 6
and node g’s node visiting order is 0. Finally, as shown in Fig. 3(d), the graphs
composed of 2-3-4, 2-3-1, 3-4-6 and 4-2-5 and of b-c-e, b-c-a, c-e-f and
e-b-d are the MCS of the two graphs in Fig. 3(a).

For each such a pair of traversals, it takes O(k) operations assuming the
maximum common subgraph of size k. To find the MCS, we have to consider all
pairs of ordered triangles as the roots of the pairs of the traversals. By Property
2, there are O(nm) pairs of ordered triangles in total. Consequently, if we take
all pairs of ordered triangles as the roots of the traversals, there are O(nm) pairs
of traversals. Hence, the overall time complexity of the algorithm is O(nmk).

At first glance, our algorithm looks similar to String Growing algorithm for
subgraph isomorphism [17]. But there are two main differences: (1) our algorithm
is specialized for Planar Triangulation Graphs while String Growing algorithm is
specialized for Region Adjacent Graphs. (2) Our algorithm has worst case time
complexity O(nmk) while String Growing algorithm has worst case exponential
time complexity.

5 Experiments

In the experiments, n random points in the two-dimensional plane were generated
to obtain point set S1 and triangulated by Delaunay triangulation to obtain
graph G1. m points around the center of S1 were selected to obtain point set
S2 and then triangulated by Delaunay triangulation to obtain graph G2. Due to
the boundary effect of Delaunay triangulation, G2 is not necessarily a subgraph
of G1 in general.
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Fig. 3. Illustration of the algorithm

Algorithm 1. MCS of Planar Triangulation Graphs

1 foreach Pair of ordered triangles (Ti,Tj) do
2 Initialize empty set M
3 Initialize empty queues Q1 and Q2

4 Enqueue(Q1,Ti)
5 Enqueue(Q2,Tj)
6 while Q1 and Q2 are not empty do
7 T1 = Dequeue(Q1)
8 T2 = Dequeue(Q2)
9 M = M ∪ {(T1,T2)}

10 foreach Pair of triangles (T adj
1 ,T adj

2 ) adjacent to (T1,T2) and not in M
do

11 if their corresponding nodes have the same node visiting order then

12 Enqueue(Q1,T
adj
1 )

13 Enqueue(Q2,T
adj
2 )

14 end

15 end

16 end
17 Record M with its cardinality

18 end
19 return M with the maximum cardinality
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The graph data was generated in MATLAB. The algorithm is implemented
in C++. The experiments were run with Intel Core i5-2400 3.1GHz CPU and
4GB RAM and with a single thread.

5.1 Small Random Graphs

In this set of experiments, our algorithm is compared with an exact MCS al-
gorithm. The exact algorithm works by constructing an association graph and
finding the maximum clique of it, as in [11, 12]. The maximum clique corre-
sponds to the MCS. The association graphs were built according to [12]. The
maximum clique algorithm we used is a Branch-and-Bound method [18], due to
its relatively high speed (still exponential time complexity) and efficient imple-
mentation. McGregor’s algorithm [10] requires that every node of the smaller
graph must be matched to some node of the larger graph. Such requirement is
not always satisfied in practice. Therefore, McGregor’s algorithm is not included
in the comparison. The sizes of graphs range only from 5 to 20, due to the high
computational costs of the exact MCS algorithm. Three cases of MCS testing
experiments were conducted: 20 nodes vs. 5 nodes, 20 nodes vs. 10 nodes, and 20
nodes vs. 15 nodes. The number of edges of the common subgraphs and runtime
of two algorithms averaged over 20 trials are shown in Table 1 and Table 2,
respectively. Again, due to the high computational costs of the exact algorithm,
only 20 trials in each case were conducted.

Table 1. Average edges of MCS dependent on graph size (nodes)

Algorithm 20 vs. 5 20 vs. 10 20 vs. 15

Exact 7.5 20.25 32.95

Ours 7.4 19.5 32.7

Table 2. Runtime (sec) dependent on graph size (nodes)

Algorithm 20 vs. 5 20 vs. 10 20 vs. 15

Exact 0.002 6.35 2202.123

Ours 0.005 0.032 0.087

5.2 Large Random Graphs

In this set of experiments, the performance of our algorithm in finding MCS of
relatively large graphs is shown. We vary the size of G1 and G2 to record the
runtime of our algorithm in Fig. 4. The size of graphs range from 50 nodes to
2000 nodes. See Fig. 5 for visualization.

In Fig. 4(a), the size of G2 is kept constant at 50 nodes, while the size of
G1 varies from 50 to 2000 nodes. In contrast, in Fig. 4(b), the size of G2 varies
from 50 to 300 nodes at constant size of G1 at 500 nodes. The computation time
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Fig. 4. Runtime (sec) dependent on graph size (nodes)

measured in these experiments (averaged over 10 trials) confirms the theoretical
complexity mentioned in Section 4. In Fig. 4(a), a linear increase of the compu-
tation time in terms of the size of G1 of is observed, while the behavior in Fig.
4(b) is superlinear in the size of G2 since the increase of the size of the smaller
graph would also increase the size of the maximum common subgraph.

To the knowledge of the authors, there exists no other specialized algorithm
for computing connected MCS of Planar Triangulation Graphs. Therefore there
exists no direct competitor against which the proposed algorithm could be evalu-
ated. Of course one could benchmark the new algorithm against other algorithms
that were developed for general graphs. Here we note, however, that the algo-
rithms in [10, 12–14] were tested on much smaller graphs (≤ 100 nodes) than
the ones considered in this set of experiments. Therefore, it is computationally
prohibitive to run comparison experiments.

6 Conclusion and Future Work

We present a fast algorithm for approximately solving the MCS problem of
Planar Triangulation Graphs. In its present version, the algorithm can only cope
with unweighted graphs without node attributes. However, it is straightforward
to include weights on edges and attributes on nodes. Theoretical analysis on the
quality of the approximation and more systematic experimental comparison with
other MCS algorithms, such as one using approximate maximum clique detection
methods [19], will be explored in the future. Also the application of the proposed
algorithm to Planar Triangulation Graphs obtained from real images will be an
interesting topic to be explored in future research.
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Fig. 5. 100 nodes vs. 200 nodes: 39 sec
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